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Preface 
 

 This note serves as an elementary introduction to the induced velocity created by a field of 
vortices that reside in the wake of a rotor blade. The approach is to build a bridge between familiar 
fixed-wing theory over to a rotor blade in forward flight. This bridge is built in four parts plus 
concluding remarks. 
 
 By way of background, rotorcraft technologists, after a nearly seven decade effort, have 
finally begun to provide accurate computer based prediction of a helicopter rotor blade�s airloads 
and dynamic response. The decades-long effort was capped during the last four years by tying 
airload prediction (with advanced CFD methods) to completely coupled structural dynamic response 
(calculated with very advanced modal methods). Typical results, such as Refs. 1 and 2, confirm the 
progress of what this relatively small band of engineers have achieved after some 70 years of 
dedicated work. 
 
 In September 1969, I presented a paper at the V/STOL Technology and Planning Conference 
sponsored by the Air Force Flight Dynamics Laboratory (Ref. 3).1 This paper included a figure 
showing the progress in removing assumptions from the original rotor performance theory 
developed by Juan de la Cierva in the late 1920s. The figure is reproduced in this note as Figure 1. 
You can see from Fig. 1�s dashed line that I was, in 1969, confident that by 1975 we would be done. 
Of course, a revision to that 1969 view reflecting history is quite in order. So, Fig.1�s solid line now 
shows the more accurate progress in hindsight.  
 
 One of the toughest assumptions to remove was that of uniform downwash. Professor Rene 
Miller of MIT showed the way in 1962 with Ref. 4. Work that followed is discussed rather 
completely in Chapter 13 of Wayne Johnson�s Helicopter Theory. The interaction between the rotor 
blades that create the induced velocity field and the effect the induced velocity feeds back on each 
blade was a daunting complexity that needed a computer before even rudimental solutions became 
tractable.  
 
 There is some interesting knowledge to be gained, however, from disconnecting the blade 
loading from the induced field. That is the purpose of this note: to calculate the induced velocity at a 
blade where the blade�s bound circulation is given in terms of radius and azimuth. Once specified, 
the blade�s bound circulation and lift distribution remain unchanged despite the resulting induced 
velocity field. This is, of course, a comparatively simple problem compared to the real problem. 
Furthermore, in this note only a one-bladed rotor is considered, and to make the problem even 
simpler, only a prescribed, rigid wake is considered.  
 
 An interesting advantage of these simplifications is that a bridge from the fixed wing to the 
rotary wing is quite easy to construct. To make the bridge secure, I have tried to leave nothing to the 
imagination concerning the sign conventions, the mathematical notations, and the steps under 
discussion. 

F. D. Harris, Oct. 16, 2005 

                                                 
1 This conference was held in Las Vegas, Nevada, a city�I was led to believe�that was the V/STOL technical capital 
of the world. 
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I.  Introduction to the Fixed Wing 
 

The Classical Fixed-Wing Problem 
 
 The classical fixed-wing induced velocity problem begins, as explained in most aerodynamic 
textbooks, by assuming a bound circulation that is elliptical. The wing is placed in straight and level 
flight. An array of horseshoe vortices is envisioned. The resulting induced velocity at the wing is 
found to be constant from the port wingtip to the starboard wingtip. In summary,  

(0.1)     
2

o
xw o xw

2xwif 1 then v
b 2b

Γ⎛ ⎞Γ = Γ − =⎜ ⎟
⎝ ⎠

 

where Γo is the maximum circulation in square feet per second, b is the wingspan in feet, and xw is 
the span station being xw =  � b/2 at the port wingtip and xw = +b/2 at the starboard wingtip. The 
induced velocity, vxw , is in feet per second and is constant from tip to tip.  
 
 In this note, think of the wing rotating, not flying straight. Therefore it is quite helpful to 
approach the fundamental geometry used in the classical derivation from a different point of view. 
Suppose a fixed wing is east of a pylon and flying north past the pylon. Ignore�for the moment�an 
anticipated 180-degree U-turn around the pylon.2 (The U-turn results will be discussed after 
reconstructing the classical problem.) The situation is illustrated with Fig. 2. 
 
 In Fig. 2, the right-hand axis system gives a positive Z axis coming up out of the paper. The 
�pylon� is located at X = Y = Z = 0. The wing centerline is placed a distance D from the pylon in the 
plus X direction. The wing coordinates are measured from the wing centerline. The station on the 
wing where induced velocity is sought is denoted by xw. A vortex trails downstream from the wing 
at wing station xv. A small element of the vortex, dS, is shown located at a distance L from wing 
station xw. The reference angle θ is used to locate the vortex element in relation to the wing. When 
θ is equal to minus π/2, the vortex element is at � ∞. When θ equals zero, the vortex element is 
located at the wing. The calculation of induced velocity by the Biot-Savart law, as derived from 
vector notation, is simply 

(0.2)     ( ) i j j i i j j iv xw
xw 3 3

xw xv

L dS L dS L dS L dSd1d dv d dxv d
4 L 4 dxw L=

− −⎡ ⎤ ⎡ ⎤γ ⎡ Γ ⎤⎛ ⎞= θ = −⎢ ⎥ ⎜ ⎟ ⎢ ⎥⎢ ⎥π π ⎝ ⎠⎣ ⎦⎣ ⎦ ⎣ ⎦
θ  

This fundamental equation is deceptively simple because to calculate the induced velocity, vxw , at 
any station along the wing, xw, only a double integral has to be performed. That is 

(0.3)     
b / 2 0

i j j ixw
xw 3

xw xv/ 2b / 2

L dS L dSd1v dxv d
4 dxw L

+

=−π−

−⎡ ⎤⎡ Γ ⎤⎛ ⎞= −⎜ ⎟ ⎢ ⎥⎢ ⎥π ⎝ ⎠⎣ ⎦
θ

⎣ ⎦

⌠ ⌠
⎮ ⎮

⌡⌡
 

                                                 
2 Imagine a rotor blade at the traditional downwind, zero-azimuth station, which will, after the U-turn, be at the 180-
degree upwind azimuth station. 
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 The double integration required by Eq. (0.3) is hampered (to put it mildly) whenever xwd
dxw
Γ  

equals either plus or minus infinity. The double integration can be an even bigger problem whenever 
L = 0. If the double integration is performed numerically, situations where numbers approach plus or 
minus 1010 can become quite frustrating. Modern computers using so-called double precision and 
advanced numerical integration schemes have helped to lower this frustration. But the fundamental 
basis of numerical integration is the Taylor series. The hope is that�without a breach in engineering 
accuracy�dθ and dxw can be replaced by ∆θ and ∆xw when the integral operators are replaced by 
summation operators. There are, of course, a number of ingenious coordinate transformations that 
can completely remove an apparent integrating roadblock.  
 
 Here is an example of a coordinate transformation that helps lower frustrations with the 
fixed-wing problem. Consider the situation when a wing�s lifting line is loaded with an elliptical 
bound circulation defined as  

(0.4)     
2

xw o
2xw1

b
⎛ ⎞Γ = Γ −⎜ ⎟
⎝ ⎠

 

where xw =  � b/2 at the port wingtip and xw = + b/2 at the starboard wingtip. The derivative that the 
Biot-Savart law requires is 

(0.5)     
1

2 2
xw o

v o 2
xw xv

d 1 2xv 2xv 2 2 2xvdxw 1 2 dxv dxv
dxw 2 b b b b b2xv1

b

−

=

⎡ ⎤
⎢ ⎥⎧ ⎫

⎡ ⎤Γ Γ⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥γ = − = − Γ − − = +⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦⎢ ⎥⎪ ⎪⎣ ⎦ ⎛ ⎞⎢ ⎥−⎩ ⎭ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

where xv = �b/2 at the port wingtip and xv = +b/2 at the starboard wingtip. You can immediately see 
that the required derivative is plus infinity at the starboard wingtip and minus infinity at the port 
wingtip. Now look what happens with the coordinate transformation of  

(0.6)     b bxv cos and dxv sin d
2 2

= − β = β β  

where β = 0 is the port wingtip and β = π is the starboard wingtip. Then the bound circulation 
becomes 

(0.7)     
2 2

2
o o

2 b1 cos 1 cos sin
b 2β
⎛ ⎞ ⎛ ⎞Γ = Γ − − β = Γ − β = Γ β⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

o  

and the required Biot-Savart derivative becomes 

(0.8)     ( )xw o
v o2

xw xv

d 2 bdxv cos sin d cos d
dxw b 21 cos=

⎡ ⎤Γ Γ⎛ ⎞ ⎛ ⎞γ = − = − β β β = −Γ β β⎢ ⎥ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ − β⎢ ⎥⎣ ⎦
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Clearly, singularities caused by the derivative xwd
dxw
Γ  at the wingtips have been removed. 

 The preceding coordinate transformation, when placed in the Biot-Savart law for this fixed-
wing problem, gives 

(0.9)     [ ]
0

i j j i
xw o 3

/ 20

L dS L dS1v cos d
4 L

π

−π

−
d

⎡ ⎤
= −Γ β β θ⎢ ⎥π ⎣ ⎦

⌠ ⌠
⎮ ⎮

⌡⌡
 

 The next step is to construct the second portion of the integrand, which is  

i j j i
3

L dS L dS
d

L
−⎡ ⎤

θ⎢ ⎥
⎣ ⎦

 

The geometric dimensions, L, Li, Lj, dSi and dSj , are components of vectors. When looking at 
Fig. 2, one has a choice of reference systems. Since this fixed wing is flying straight and level past 
the pylon, there is no advantage to including the distance D or using the reference angle θ in the 
wake geometry.3 Therefore, continue using just the reference angle δ. That means 

i j j i i j j i
3 3

L dS L dS L dS L dS
d is replaced by d

L L
− −⎡ ⎤ ⎡ ⎤

θ δ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

and δ is positive counterclockwise. The vortex segment farthest downstream is located at δ = 0 and a 
vortex segment right at the wing is located by δ = +π/2. 
 
 Now, from Fig. 2, the distance L is written as  

(0.10)     

i j k

3/ 23 2 3 2

L L L L (Xw Xv)i (Yw Yv) j (Zw Zv)k

with Xw xw Yw 0 Zw 0
xv xwXv xv Yv Zv 0

tan

and L (Xw Xv) (Yw Yv) (Zw Zv)

= + + = − + − + −

= =
−

= =
δ

⎡ ⎤= − + − + −⎣ ⎦

=

=  

Therefore, with the usual �substitute and simplify� phrase, 

(0.11)     ( )
3/ 22

3
2

xv xw
L

sin

⎡ ⎤−
= ⎢ ⎥

δ⎢ ⎥⎣ ⎦
 

In a similar manner, the vortex is described by the vector 

(0.12)     ( ) ( ) ( )i j kS S S S Xv i Yv j Zv k= + + = + +  

                                                 
3 The next part of this note addresses the U-turning wing. That problem requires, of course, some reference system that 
includes D and uses the reference angle θ.  
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and therefore 

(0.13)     ( )

i
i

j
j 2

k
k

S XvdS d d 0

S xv xwYvdS d d
sin

S ZvdS d d 0

∂ ∂
= δ = δ =
∂δ ∂δ
∂ −∂

= δ = δ =
∂δ ∂δ δ
∂ ∂

= δ = δ =
∂δ ∂δ

 

Here the assumption about the trailed vortex geometry is that it extends straight aft of the wing 
without descending or climbing, remaining perpendicular to the wing lifting line. Again, by 
substitution and simplification,  

(0.14)     i j j i
3

L dS L dS 1d si
L xv xw
−⎡ ⎤ −

δ = δ δ⎢ ⎥ −⎣ ⎦
n d  

 
 The double integral created by the Biot-Savart law now appears, after substituting Eq. (0.14) 
into Eq. (0.9), as 

(0.15)     [ ]
/ 2

xw o
00

1 1v cos d
4 xv x

π π − sin d
w

⎡ ⎤= −Γ β β δ δ⎢ ⎥π −⎣ ⎦

⌠ ⌠
⎮⎮ ⌡⌡

 

A minor problem is immediately observed in Eq. (0.15). Formal integration really requires that xv 
and xw be related, in some fashion, to β and/or δ. This minor problem is repaired using Eq. (0.6) 

where bxv cos
2

= − β . And, rather than have the vortex wing station keyed by the angle β while the 

wing station is keyed to xv, you can make the substitution that bxw cos
2

= − α . These substitutions 

result in 

(0.16)     [ ]
/ 2

o
00

1 1v cos d
2b cos cos

π π

α sin d⎡ ⎤−
= −Γ β β δ δ⎢ ⎥π α − β⎣ ⎦

⌠ ⌠
⎮ ⎮

⌡⌡
 

A much, much bigger problem with Eq. (0.15) and Eq. (0.16) is that any integration, whether formal 
or numerical, must face the possibility that (xv � xw) might be zero. In Eq. (0.16) terms, real trouble 
will occur if β = α.  
 
 The integration with respect to wake age (i.e., with respect to δ ) results in 

(0.17)     o o

0 0

cos cosv d
2b cos cos 2b cos cos 2b

π π

α

Γ ⎡ ⎤ Γ ⎡ ⎤ Γβ β
= β = −⎢ ⎥ ⎢ ⎥π α − β π β− α⎣ ⎦ ⎣ ⎦

⌠ ⌠
⎮ ⎮
⌡ ⌡

odβ = −  

Note immediately that the above derivation gives a negative value for induced velocity created by a 
wing carrying positive lift! The reason for this outcome is the right-hand rule axis system of Fig. 2 
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where the Z axis is positive up. Therefore, the induced velocity is directed in the negative Z 
direction. Of course, reason prevails in all textbooks on the subject, so the negative induced velocity 
is simply called downwash and the sign is changed to positive. This is equivalent to letting 

. v o cos dγ = +Γ β β
 
 Incidentally, Glauert proved the integration with respect to β equals π long ago. Also, Alan 
Pope in Appendix 3 of his book Basic Wing and Airfoil Theory shows that  

(0.18)     

[ ] [ ]

o o

0 0

o o o o

0 0

cos cosv d 1 d
2b cos cos 2b cos cos

1d cos d cos 0
2b 2b cos cos 2b 2b

π π

α

ππ

Γ ⎡ ⎤ Γ ⎡ ⎤β α
= β = + β⎢ ⎥ ⎢ ⎥π β− α π β− α⎣ ⎦ ⎣ ⎦

Γ Γ ⎡ ⎤ Γ Γ
= β+ α β = π + α⎢ ⎥π π β− α π π⎣ ⎦

⌠ ⌠
⎮ ⎮
⌡ ⌡

⌠⌠⎮ ⎮⌡ ⌡

 

It comes in very handy at times to know that 

(0.19)     
0 0

1 cos nd 0 and that d
cos cos cos cos sin

π π
⎡ ⎤ ⎡ ⎤ sin nβ π β

β ≡ β ≡⎢ ⎥ ⎢ ⎥β − α β− α β⎣ ⎦ ⎣ ⎦

⌠ ⌠
⎮ ⎮
⌡ ⌡

 

 But now suppose numerical integration (rather than formal, closed-form integration) of Eq. 
(0.16) is the solution approach. I took an approach with the Mathsoft Inc. product called Mathcad 
Plus 6.0 that goes like this:  

( )

o

s

o m
n,m n

m s

n

m

89
n,m n 1,m

m
n 0

179
m m 1

s
n 0

s s

2 b 1
s 0,1......179

s 1/ 2
180

cosdvd d sin
2b cos cos

n 0,1........90 n
180

m 0,1......180 m
180

dvd d dvd d
dvd

180 2
dvd dvdv

180 2
bxw cos
2

+

=

+

=

Γ = =
=

π
α = +

⎧ ⎫Γ β
β δ = δ⎨ ⎬π β − α⎩ ⎭

π
= δ =

π
= β =

β δ + β δπ
β =

β + βπ
=

= − α

∑

∑
 

This numerical solution, �programmed� in Mathcad, gave +0.9999746151 accuracy nearly within a 
blink of an eye, using a Dell Optiplex high-end computer. The answer from Eq. (0.17) is exactly 
unity (when you ignore the minus sign). 
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As a reminder, the fixed wing represented by a lifting line and an elliptical bound circulation 
produces a lift calculated from 

(0.20)     

b / 2 2

o

b / 2

/ 2 2
o / 2

/ 2 2
o / 2

o

o o

2xwL V 1 dxw
b

bV 1 sin cos d
2

bV cos d
2
bV
2 2

4LbV so
4 b

+

−

+π

−π

+π

−π

⎛ ⎞= ρ Γ −⎜ ⎟
⎝ ⎠

⎛ ⎞= ρ Γ − θ θ θ⎜ ⎟
⎝ ⎠

= ρ Γ θ θ

π⎛ ⎞= ρ Γ ⎜ ⎟
⎝ ⎠

π
= ρ Γ Γ =

πρ

⌠
⎮
⌡

∫

∫

V

 

The wing incurs an induced drag to carry this lift, which is  

(0.21)     
( )

2
2xw o

o o 2 2

v LInduced drag L bV
V 4 2bV 8 2 V b

Γπ π⎛ ⎞⎛ ⎞= = ρ Γ = ρΓ =⎜ ⎟⎜ ⎟ ρ π⎝ ⎠⎝ ⎠
 

This drag can be used to calculate a horsepower required by multiplying both sides of the equation 
by velocity, V, and dividing by 550. Thus, 

(0.22)   
( ) ( )

22
2

i 2 2 2

V L Vq LInduced Horsepower HP with q 2 V
550 2 V b 550 qb

⎡ ⎤ ⎛ ⎞
≡ = = = ρ⎢ ⎥ ⎜ ⎟ρ π π ⎝ ⎠⎣ ⎦

 

 A numerical example calculated here will be a useful result to which one can later compare 
rotating-wing calculations. Suppose both a wing and a rotor have equal span, say, 44 feet. In rotor 
notation, the rotor radius is 22 feet. Assume, for example, that each lifting device carries a lift of 
2,712 pounds, each is flying at sea level (ρ = 0.002378 slug/ft2), and each is flying at V = 301.8 
ft/sec or 178 knots. Then, by Eq. (0.22), the induced horsepower required by the wing is 6.13 
horsepower. 
 
 Keep in mind that the elliptical bound circulation distribution used in the above discussion is 
the first term of the more general distribution used in fixed-wing analyses. Recall that the general 
distribution is seen in the form 

(0.23)      n
1

2bV A sin n
∞

Γ = β∑

Everything read in this note�including the rotor analyses�could be extended by this fixed-wing 
logic of Eq. (0.23). 
 
 And there you have the fixed wing flying north past the pylon located off its port wingtip. 
Now consider the situation after the fixed wing does a 180-degree U-turn. 
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The Fixed Wing after Completing a 180-Degree U-Turn 
 
 The next step in bridging the gap between a fixed wing and a rotary wing was actually taken 
by H. Glauert in 1923, although it is doubtful he had a bridge in mind when he published R & M 
866. After all, in 1923, Juan de la Cierva�s earliest autogyro experiments were just bearing fruit in 
Spain and a practical helicopter was still 15 years away. The title of Glauert�s 1923 report is 
�Calculation of the Rotary Derivatives Due to Yawing for a Monoplane Wing.� He was dealing with 
the wing rolling and yawing moments created by an induced velocity field that trailed the wing in 
one half of a circle. The problem is, in fact, quite akin to a hovering one-bladed rotor where only a 
small part of the wake is taken into account. Glauert obtained a very simple closed-form solution by 
assuming the wing made the U-turn with a large turning radius, D, relative to the wingspan, b, (i.e., 
D>>b). His quite useable engineering result for the induced velocity over the wingspan was (in the 
notations of my note here)  

(0.24)     o
xw

1 xwv 1
2b 2 D
Γ ⎛ ⎞= +⎜ ⎟

⎝ ⎠
 

The purpose of this portion of the note is to explore this problem when the turning radius is 
considerably smaller than what Glauert assumed. The objective is to think of the �pylon� as a rotor 
hub and place the port wingtip a small distance from the hub, which gives the appearance of a �root 
cutout� in rotorcraft terminology. Glauert�s approach will be presented first and then a numerical 
integrating approach will be shown. 
 
 The geometry of the problem is illustrated with Fig. 3. In contrast to Fig. 2, the wing has now 
advanced 180 degrees. Immediately note that the X axis is positive to the left, but left the Y axis in 
its commonly found, ordinate position. By the righthand rule then, the positive Z axis now points 
down, which is into the paper. The wing is doing a U-turn of distance D, which is measured from the 
�pylon� to the wing mid-span point. The wing is represented by a lifting-line vortex having an 
elliptical bound circulation, just as with the classical fixed-wing problem. The Biot-Savart law is 
again invoked, so 

(0.25)     ( ) i j j iv
xw 3

L dS L dS
d dv d

4 L
−⎡ ⎤γ

= θ⎢ ⎥π ⎣ ⎦
 

and the dimensions are expressed as vectors. However, the basic vortex geometry has changed in 
going from Fig. 2 to Fig. 3. Now  

(0.26)      ( ) ( )

i j k

3/ 23 2 3 2

L L L L (Xw Xv)i (Yw Yv) j (Zw Zv)k

where Xw D xw Yw 0 Zw 0
Xv D xv cos Yv D xv sin Zv 0

and L (Xw Xv) (Yw Yv) (Zw Zv)

= + + = − + − + −

= + = =

= + θ = − + θ =

⎡ ⎤= − + − + −⎣ ⎦

The reference angle θ is taken positive counterclockwise in Fig. 3. In a similar manner, the vortex is 
described by 
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(0.27)     ( ) ( ) ( )i j kS S S S Xv i Yv j Zv k= + + = + +  

but with changed vortex geometry reflecting the ½-circle wake, the vortex element geometry is  

(0.28)     

( ) ( )

( ) ( )

i
i

j
j

k
k

D xv cosS XvdS d d d D xv sin

D xv sinS YvdS d d d D xv cos

S ZvdS d d 0

∂ + θ∂ ∂
= θ = θ = θ = − + θ
∂θ ∂θ ∂θ

∂ − + θ⎡ ⎤∂ ∂ ⎣ ⎦= θ = θ = θ = − +
∂θ ∂θ ∂θ
∂ ∂

= θ = θ =
∂θ ∂θ

θ  

Here the assumption about the trailed vortex geometry is that it extends in a circular arc aft of the 
wing for 180 degrees without descending or climbing. Furthermore, any given vortex has constant 
circulation, γv , from when it leaves the wing all the way back to when the turn began (i.e., θ = 0 
back to θ =  � π). 
 
 The substitution of this U-turn geometry into the Biot-Savart law gives, with simplification, 

(0.29)     ( ) ( )( ) ( )
( ) ( ) ( )( )

2
v

xw 3/ 22 2

D xv D xw cos D xv
d dv d

4 D xv D xw 2 D xv D xw cos

⎧ ⎫
+ + θ− +γ ⎪ ⎪= θ⎨ ⎬π ⎡ ⎤⎪ ⎪+ + + − + + θ⎣ ⎦⎩ ⎭

 

 The wake-age integral problem is immediately seen as requiring elliptical integrals�even if 
the wing�s bound vortex circulation varies with wake age. For this example, assume as Glauert did, 
that γv does not vary with θ. Now, at the risk of boring you, the transformation to complete elliptical 
integrals (i.e., E and K) begins by letting θ = π � 2φ and dθ =  � 2 dφ. You also need to recall that 

( ) ( ) 2cos cos 2 cos 2 2sin 1θ = π− φ = − φ = φ−  
Then, a couple of substitutions and rearrangements immediately shows that 

(0.30)     

( ) ( )( )
( )

( )( )
( )

v
xw 3/ 2 3/ 22 2

2
v

3/ 2 3/ 22 2

2 D xv 2D xw xv 1d dv d
4 2D xw xv 1 k sin

4 D xv D xw sin d
4 2D xw xv 1 k sin

⎧ ⎫+ + +γ ⎪ ⎪= φ⎨ ⎬π + + ⎡ ⎤− φ⎪ ⎪⎣ ⎦⎩ ⎭
⎧ ⎫+ +γ φ⎪ ⎪− φ⎨ ⎬π + + ⎡ ⎤− φ⎪ ⎪⎣ ⎦⎩ ⎭

−

)

 

where 

(0.31)     ( )(
( )

2
2

4 D xw D xv
k

2D xv xw
+ +

=
+ +

 

 This substitution changes the wake-age integrating limits from θ = �π to θ = 0 over to φ = 0 
to φ = +π/2. The two budding integrals can be found, for example, in the translated Russian 

 8



handbook by I. S. Gradshteyn and I. M. Ryzhik titled Tables of Integrals, Series, and Products, 
edited by Alan Jeffrey. Thus 

(0.32)     

/ 2

3/ 2 22 2
0

/ 2 / 2/ 2
2 2

3/ 2 3/ 2 3/ 22 2 2 2 2 2
00 0

2 2 2

1 1d E
1 k1 k sin

sin 1 cosd d
1 k sin 1 k sin 1 k sin

1 1 1E K E
1 k k k

π

π ππ

φ =
−⎡ ⎤− φ⎣ ⎦

φ φ
φ = φ− φ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− φ − φ − φ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎛ ⎞= − −⎜ ⎟− ⎝ ⎠

⌠
⎮
⌡

⌠ ⌠⌠
⎮ ⎮⎮⎮ ⎮⌡⌡ ⌡

d  

where the complete elliptical integrals, E and K, are computed as  

(0.33)     
/ 2

/ 2 2 2

2 20
0

1E 1 k sin d K
1 k sin

π
π

= − φ φ = dφ
− φ

⌠
⎮
⌡

∫  

and their values depend on the modulus, k2, which for this U-turning wing problem, is given by Eq. 
(0.31). Note that when xv = xw, k2 = 1.0, E = 1.0, and K = +∞. 
 
 In this way 

(0.34)     ( )( ) ( )
( ) ( ) ( )( )

0
2

v
xw 3/ 22 2

D xv D xw cos D xv
dv d

4 D xv D xw 2 D xv D xw cos
−π

⎧ ⎫
+ + θ− +γ ⎪ ⎪= θ⎨ ⎬π ⎡ ⎤⎪ ⎪+ + + − + + θ⎣ ⎦⎩ ⎭

⌠
⎮
⎮⎮
⌡

 

is converted into 

(0.35)     

( )( )
( )

( )( )
( )

/ 2

v
xw 3/ 2 3/ 22 2

0

/ 2
2

v
3/ 2 3/ 22 2

0

2 D xv 2D xw xv 1dv d
4 2D xw xv 1 k sin

4 D xv D xw sin d
4 2D xw xv 1 k sin

π

π

⎧ ⎫+ + +γ ⎪ ⎪= φ⎨ ⎬π + + ⎡ ⎤− φ⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫+ +γ φ⎪ ⎪− φ⎨ ⎬π + + ⎡ ⎤− φ⎪ ⎪⎣ ⎦⎩ ⎭

⌠
⎮
⎮
⌡

⌠
⎮
⎮
⌡

−

 

which, upon simplification, reduces to 

(0.36)     v
xw

E Kdv
4 xv xw 2D xv xw
γ ⎡ ⎤= +⎢ ⎥π − + +⎣ ⎦

 

The wake integration being complete, the problem is reduced to the spanwise collection of all 
vortices trailed from the wing.  
 
 The insightful step Glauert next took was to make use of the approximations for E and K 
when k2 is closer to 1.0 than to 0 rather than calculate them using Eq. (0.33). These approximations 
are  
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(0.37)     
( )

( )

2
2

2
2 2

1 16 1E 1 ln 1 k
4 1 k 2

1 16 1 16K ln ln 1 1 k
2 1 k 8 1 k

⎛ ⎞⎛ ⎞≈ + − −⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞≈ + −⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠

−

 

The fact that the approximation for E begins with one (1) is enormously important, which is seen 
when these approximations are substituted into Eq. (0.36). Of course, a lengthy integration problem 
results, which is 

(0.38)     
( )

b / 2
v

xw
b / 2

b / 2
2v

2
b / 2

b / 2
v

2
b / 2

b / 2
v

2
b / 2

1v
4 xv xw

1 1 16 1ln 1 k
4 xv xw 4 1 k 2

1 1 16ln
4 2D xv xw 2 1 k

1 1 16ln 1
4 2D xv xw 8 1 k

+

−

+

−

+

−

+

−

γ ⎛ ⎞= ⎜ ⎟π −⎝ ⎠
⎡ ⎤γ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟π − −⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

γ ⎡ ⎤⎛ ⎞ ⎛ ⎞+ ⎜ ⎟ ⎜ ⎟⎢ ⎥π + + −⎝ ⎠ ⎝ ⎠⎣ ⎦

γ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ −⎜ ⎟ ⎜ ⎟⎜π + + −⎝ ⎠ ⎝ ⎠⎝

⌠⎮
⌡

⌠⎮
⌡

⌠⎮
⌡

⌠⎮
⌡

( )21 k

−

⎡ ⎤
−⎢ ⎥⎟

⎠⎣ ⎦

 

But now look very closely at the first integral to be obtained. Recognize that 
b / 2

v
xw

b / 2

1v
4 xv xw

+

−

γ ⎛ ⎞= ⎜ ⎟π −⎝ ⎠
⌠⎮
⌡

 

is nothing more than the classical fixed-wing problem presented in Part I of this note.  
 
 This is a key result that Glauert provided in his 1923 report because it says the so-called 
�near wake� of a U-turning fixed wing (i.e., think a rotor blade�s near wake) is no tougher problem 
than the straight flying wing to which is added the influence of a curved �far wake.� For the 
elliptical bound circulation used as the example in this note, the spanwise integration becomes  

(0.39)     

( )

( )

o
x

b / 2
2v

2
b / 2

b / 2
v

2
b / 2

b / 2
2v

2
b / 2

v
2b

1 1 16 1ln 1 k
4 xv xw 4 1 k 2

1 1 16ln
4 2D xv xw 2 1 k

1 1 16ln 1 1 k
4 2D xv xw 8 1 k

+

−

+

−

+

−

Γ
=

⎡ ⎤γ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟π − −⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
γ ⎡ ⎤⎛ ⎞ ⎛ ⎞+ ⎜ ⎟ ⎜ ⎟⎢ ⎥π + + −⎝ ⎠ ⎝ ⎠⎣ ⎦

−

⎡ ⎤γ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟π + + −⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

⌠⎮
⌡

⌠⎮
⌡

⌠⎮
⌡
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 The additional three integrals can be grouped into one integral. But first, the vortex 
circulation strength, assuming an elliptical bound circulation for the wing lifting line, Eq. (0.8), is 
substituted into Eq. (0.39). Next the elliptic integral modulus, k2 , from Eq. (0.31), is substituted into 
Eq. (0.39). (I would have included the results of these substitutions, but the resulting expression is 
way too long.) Then a selection of wingspan stations, xw, is made (say 50) and, in short order, 
Mathcad calculated the induced velocity distributions at any turning distance, D.  
 
 Despite the appearance of possible singularities in Eq. (0.39), Mathcad actually experienced 
no numerical integration problems. I did not let Mathcad try to simplify the integrand. The 
temptation is to fiddle with 1-k2, which Mathcad or I fouled up. A very unproductive effort given 
Mathcad�s speed on my Dell computer. 
 
 Glauert, in R & M 866, assumed that the turning radius was considerably greater than the 
wingspan, which allowed simple integration of Eq. (0.39), the result being Eq. (0.24). But consider 
the results as the wing makes tighter and tighter U-turns. A non-dimensional measure of the 
semicircle�s tightness is wingspan, b, divided by the distance from the �pylon,� D. The tightest turn 
would be when the port wingtip is touching the �pylon,� in which case D = b/2 or b/D = 2.0. This 
corresponds to a rotor blade with zero root cutout. A turning ratio of b/D = 1 corresponds to a 0.33 
root cutout. The extreme in the other direction would be, of course, not turning at all and so D = ∞ 
and b/D = 0.  
 
 For simple illustration purposes, let the wingspan be unity (i.e., b = 1.0 foot) and let the 
maximum elliptical bound circulation, which occurs at the wing mid-span, be two (i.e., Γo = 2.0 
square feet per second). Thus, for the following examination, Γo /2b = 1.0 foot per second. Two 
results are immediately known from the preceding discussion: 
 

Turn parameter, 
b/D 

Spanwise induced 
velocity, vx

 
Source 

Not Turning vx = Γo /2b = 1.0 Eq. (0.1) 
Wide Turn vx = 1+xw/2D Eq. (0.24) 

 

 The results for several tighter and tighter turns are shown with Figures 4 through 7. For a 
turn distance D that is 10 times the wingspan, Glauert�s approximation is very useful as Fig. 4 
shows. When the turn distance is equal to the wingspan (equivalent to a rotor blade root cutout of 
1/3), the distortion in induced velocity across the wingspan is significant, as shown with Fig. 5. This 
distortion grows more pronounced as the turn distance shrinks, which is illustrated by Figs. 6 and 7. 
These two figures correspond to a rotor blade root cutout of 0.1667 and 0.0476, respectively.  
 
 Now consider the numerical double integration involved in this U-turning wing problem. 
Figure 6 offers a virtually exact example to which numerical integration can be compared. The 
integration problem at hand is this: 
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(0.40) ( )( ) ( )
( ) ( ) ( )( )

b / 2 0
2

v
xw 3/ 22 2

b / 2

D xv D xw cos D xv
v d dxv

4 D xv D xw 2 D xv D xw cos

+

−π−

⎧ ⎫
+ + θ− +γ ⎪ ⎪= θ⎨ ⎬π ⎡ ⎤⎪ ⎪+ + + − + + θ⎣ ⎦⎩ ⎭

⌠ ⌠
⎮ ⎮
⎮ ⎮⎮⎮ ⌡⌡

 

Philosophically, Glauert found the fixed-wing induced velocity equation is buried obscurely within 
this U-turning wing problem. Therefore, the Mathcad-provided integration scheme will encounter all 
of the fixed-wing problems at the wingtips. (Mathcad returns the notice �will not converge,� which 
makes for frustration.) A second thing you know is that the integrand�s denominator can get very, 
very small or even be zero when θ = 0. Both these probable problems suggest using the fixed-wing 
coordinate transformations, which to repeat, are 

(0.41)     b bxv cos dxv sin xw cos
2 2

= − β = β = − α
b
2

 

and assume an elliptical bound circulation along the wing�s lifting line so that 

(0.42)      v o cos dγ = −Γ β β

 With the above thoughts in mind, a �brute force� numerical integration goes like this: 
 

o 2 b 1 D 0.7
Dimension integration.

Number of radial stations at which vortices leave wing, M 90  
Number of azimuthal stations between 0 and 180 degrees, N 18,000
Range of radial stations where induced v

Γ = = =

=
=

s

n

m

m s n
o

n,m m

elocity is calculated, s 0,1.......M 1

Then proceed with these calculations
1= s

M 2

n 0,1........N n
N

m 0,1......M m
M

b b bD cos D cos cos D c
2 2 2dvd d cos

4

= −

π ⎛ ⎞α +⎜ ⎟
⎝ ⎠

π⎛ ⎞= θ = −⎜ ⎟
⎝ ⎠
π⎛ ⎞= β = ⎜ ⎟

⎝ ⎠

⎛ ⎞⎛ ⎞− β − α θ − −⎜ ⎟⎜ ⎟Γ ⎝ ⎠⎝ ⎠β θ = β
π

2

m

3/ 22 2

m s m s

N 1
n,m n 1,m

m
n 0

M 1
m m 1

s
m 0

s s

os

b b b bD cos D cos 2 D cos D cos cos
2 2 2 2

dvd d dvd d
dvd

N 2
dvd dvdv

M 2
bxw cos
2

−
+

=

−
+

=

⎧ ⎫
⎛ ⎞⎪ ⎪β⎜ ⎟⎪ ⎪⎝ ⎠

⎨ ⎬
⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞− β + − α − − β − α θ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦⎩ ⎭

β θ + β θπ
β =

β + βπ
=

= − α

∑

∑

n
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 The brute-force aspects of the above scheme are obvious. The wake age from θ = 0 to 180 
degrees is divided into 18,000 segments or 0.01 of a degree. The spanwise segmentation is a little 
more rational. Ninety (90) vortices are trailed, and induced velocity at the wing is calculated in 
between each pair of trailed vortices. This density is far from practical for the real problems 
rotorcraft engineers are solving everyday�with today�s computers. Calculating area as the sum of 
rectangular slivers is hardly advanced. Despite the obvious improvements that might be made, the 
scheme worked. 
 
 The first numerical integration result, compared to the virtually exact solution obtained by 
following Glauert, is shown with Fig. 8. The agreement over 99.9% of the wingspan is more than 
acceptable for engineering purposes. The only problem that occurred was calculation of induced 
velocity at the most outboard span station (i.e., s + 1/2 = 89.5 or xw = 0.4999238476). This span 
station is half way between the vortex trailed from the tip (i.e., m = 90) and the next vortex inboard 
at m = 89. The numerical solution gave v = 19.65 ft/sec versus the virtually exact 1.206 ft/sec. In 
contrast, the port wingtip encountered no such problems. Other than this one ridiculous answer at the 
starboard wingtip (plus being rather slow), the numerical integration scheme functioned in a 
satisfactory manner. 
 
 There are several interesting features to this U-turning wing problem. For example, the 
numerical integration proceeded from port to starboard wingtip with the numerous trailed vortices in 
between. Figure 9 illustrates what the induced-velocity wake age summation appears like for the 
calculation point next to the wing mid-span. The span station of interest is s + ½ (αs = 90.5 degrees, 
xw = 0.0087). Figure 9 shows that dv/dβ sees the impending discontinuity at the span station point, 
but the summation averages the calculation to the left of the point with the calculation to the right of 
the point. Therefore, the induced velocity, the integral found from the   

dvinduced velocity, v area under  versus 
d

= β
β

 

is obtained with quite reasonable results. 
 
 Another interesting behavior of this U-turning wing problem is shown with Fig. 10. This 
figure looks at the wake age integration involved with 

dvd d
ddv d area under versus θ

d d

⎛ ⎞
β⎜ ⎟β⎝ ⎠β =

β θ
 

The summation is illustrated at the two vortex trailed wing stations of β = 160 and β = 162 degrees 
(i.e., m = 80 and m = 81). The station at which induced velocity is sought is αs = 161 degrees. The 
fascinating point made here is that the two vortices appear to make enormous contributions to 
induced velocity within the first 2 degrees of wake age. This is one of the reasons such small 
increments in wake age (i.e., 180 degrees of wake divided into 18,000 segments) are required for the 
rudimentary rectangular area summation scheme. The spanwise distribution of dv/dβ, provided with 
Fig. 11, shows just how large the numbers are that, when summed, however, come out v = 
1.1968318858. 
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 The situation near the port wingtip, which is closest to the pylon, is quite similar to that near 
the starboard wingtip. The conclusion is that the first 15 degrees of wake age must be very densely 
populated with points if a rudimentary numerical integration is used. Fortunately, advanced methods 
currently used in the rotorcraft industry accomplish the numerical integration much more efficiently. 
 
 Rotorcraft engineers have improved their non-uniform induced-velocity calculating methods 
by dividing the wake into a near wake and a far wake. Thus Fig. 8 shows that the near wake (i.e., θ = 
0 to �15 degrees in this case) gives the most trouble for numerical integration, particularly at the 
wingtips. The far wake (i.e., θ from �15 to θ = �180 degrees in this case) responds to numerical 
integration with virtually no problems. In fact, the wake age can be divided into 1-degree segments 
versus 0.01-degree segments, and virtually the same contribution of the far wake to the induced 
velocity at the wing will be obtained.  
 
 The U-turning wing problem can be divided into a near wake and a far wake with relative 
ease. The induced velocity at the wing due to 180 degrees of circular arc wake in elliptic integral 
form is 

(0.43)     

b / 2 / 2

/ 2 2 2
2 2

00
xw

b / 2

1 d1 k sin d 1 k sinxvv dxv
4 xv xw 2D xv xw

+ π

π

−

⎡ ⎤
∂Γ φ⎢ ⎥− − φ φ − φ⎢ ⎥∂= +⎢ ⎥π − + +⎢ ⎥

⎢ ⎥
⎣ ⎦

⌠ ⌠
⎮ ⎮

⌡⎮
⎮
⎮
⎮
⌡

∫
 

Keep in mind that φ = π/2 is closest to the wing. Conversely, φ = 0 corresponds to the end of the 
wake, or where the wing was before it started the U-turn. Therefore, the wake integration amounts to 
integrating from zero up to the start of the near wake, say φNW, and then adding the near-wake 
contribution, which extends from φ = φNW to φ = π/2. It is, however, much more direct in this case, 

to subtract from the total wake (i.e., 
/ 2

0
f ( )d

π
φ φ∫ ) the wake behind the near wake (i.e., NW

0
f ( )d

φ
φ φ∫ ). 

Thus, the two elliptic integrals are rearranged as follows:   

(0.44)     
NW

NW

/ 2 2 2 2 2 2 2 2
NM0 0 0

/ 2

2 2 2 2 2 2
0 0 0

Near wake 1 k sin d 1 k sin d 1 k sin d k sin sin

1 1 1Near wake d d d
1 k sin 1 k sin 1 k sin

π φ χ

π φ χ

= − φ φ− − φ φ = − φ φ− φ χ

= φ− φ = φ
− φ − φ − φ

⌠ ⌠ ⌠
⎮ ⎮ ⎮
⌡ ⌡ ⌡

∫ ∫ ∫
 

where the angle, χ , a new upper limit of integration, is given as 

(0.45)     
2 2 2

NW NW

NW

1 k sin sin 1 k
2arctan

cos

⎛ ⎞− φ − φ −
⎜ ⎟χ =
⎜ ⎟φ⎝ ⎠
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Then, in elliptic integral shorthand, the near-wake contribution to induced velocity at the wing is 
simply 

(0.46)     ( )
b / 2

2
NM

Nearxw
Wake

b / 2

E( , k) k sin sin F( , k)xvv dxv
4 xv xw 2D xv xw

+

−

∂Γ
− ⎡ ⎤χ − φ χ χ∂= +⎢ ⎥π − + +⎣ ⎦

⌠
⎮
⎮
⌡

 

where 

(0.47)     

2 2

0

2 2
0

E( , k) 1 k sin d

1F( , k) d v
1 k sin

χ

χ

χ = − φ φ

χ = φ
− φ

⌠
⎮
⌡

∫
 

In like manner, the induced velocity at the wing due to the far wake becomes 

(0.48)     ( )

NW

NW

b / 2

2 2
2 2

00
Farxw
Wake

b / 2

1 d1 k sin d 1 k sinxvv dxv
4 xv xw 2D xv xw

+ φ

φ

−

⎡ ⎤
∂Γ φ⎢ ⎥− − φ φ − φ⎢ ⎥∂= +⎢ ⎥π − + +⎢ ⎥

⎢ ⎥
⎣ ⎦

⌠ ⌠
⎮ ⎮

⌡⎮
⎮
⎮
⎮
⌡

∫
 

where, to repeat, ( )(
( )

)2
2

4 D xw D xv
k

2D xv xw
+ +

=
+ +

 

 
 
 This completes the discussion of the U-turning wing problem. Two points have been made. 
 
(1) A virtually exact calculation of induced velocity without numerical integration questions has 
been provided. Figure 6 gives an example to which any numerical integration result may be 
compared. 
 
(2) The so-called near wake is built upon the fundamental integral solved by the fixed-wing 
community, which is  

(0.49)     ( )
b / 2

xw

b / 2

1xvFixed Wing v dxv
4 xv xw

+

−

∂Γ
− ⎡ ⎤∂= ⎢ ⎥π −⎣ ⎦

⌠
⎮
⎮
⌡
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II.  The Wing Done With Rotor Notation 
 
 The next step along the bridge from the fixed-wing world to the rotary-wing world is to 
change to rotor blade geometry and notations. This geometry is provided with Fig. 12. The intent 
here is to think of a one-bladed rotor in hovering flight. (The case of forward flight begins in Part III 
of this note.) The rotating wing is again represented as a lifting line having an elliptical bound 
circulation. The trailing vortex wake structure resembles a lock washer or, perhaps more 
descriptively, a �slinky� spring-like toy. That is, each vortex will have a circular path just like the U- 
turning wing problem. The addition is that each trailing vortex spirals downward at a constant rate 
and the wake age can extend back to the beginning of time. In short, the wake of this rotating wing 
or, better yet, a one-bladed hovering rotor, need not stop at minus 180 degrees as was done with the 
U-turning wing. 
 
 Now study Figure 12�s geometry quite closely. The rotor blade is shown rotating around the 
Z axis, which is positive down. The blade rotates in the X � Y plane where X is taken positive 
�forward,� although what forward means in this case of no forward speed is not really meaningful. 
The Y axis is normal to the X � Z plane. This X, Y, Z axis system does not rotate with the blade, nor 
does it move with time.  
 
 The blade itself has a radius, R, measured from the Z axis. The blade is shown in Fig. 12 
with a root cutout, rc. Thus, the blade�s span (thinking in terms of a wing) is simply R � rc. Any 
radial station, measured positive outward from the Z axis and along the lifting line, is denoted by, r. 
 
 The blade�s rotation angle is measured by the azimuth angle ψ, which, for convenience, 
equals zero when the blade lies along the negative X axis. The azimuth angle increases with time 
simply as the rotational speed Ω in radians per second times time in seconds. Obviously, Fig. 12 is a 
snapshot at any given time you care to start the watch. The blade is simply going round and round 
and the trailed vortex structure is left in space to descend at a prescribed rate, dZ/dt, in feet per 
second. Figure 12 is drawn to imply that the blade has been rotating for the time it takes to complete 
about two revolutions. However, the arrow head shown at the end of the one trailed vortex implies 
that time has been going on forever and, with a longer piece of paper, the spiral would extend down 
and around the Z axis to infinity. 
 
 As with the preceding fixed-wing examples, the Biot-Savart law requires a very careful 
mathematical definition for the blade and vortex wake dimensions. This is even truer when tackling 
the rotor blade problem. Using Fig. 12 as the geometric model of a single-bladed rotor, the radius 
station, r, at which the induced velocity is sought is set relative to the X � Y � Z axis by 

(0.50)      Xr r cos Yr r sin Zr 0= − ψ = + ψ =

A vortex trails aft from the blade from radius station rv. Any segment of this long spiraling vortex is 
therefore deposited at a point behind the blade and below the X � Y plane. This vortex segment, dS, 
is located at the coordinates 
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(0.51)     dZvXv rvcos Yv rvsin Zv t
dt

= − θ = + θ = + ∆  

Equation (0.51) introduces the possibility that the wake trailing behind the rotor blade does not stay 
in the X � Y plane in which the rotor blade turns. This is quite different from classical fixed-wing 
wake geometry assumptions. The rotor-blade wake descends with some velocity, dZv/dt, and this 
velocity need not be constant. In fact, in the more complete analyses of rotor systems, freedom is 
given for any given vortex segment to wander throughout the X � Y � Z axis system. For elementary 
discussion purposes, just assume a constant-diameter spiral (i.e., neither rv nor dZv/dt are influenced 
by time). Furthermore, it is not necessary at this point in the discussion to be more specific about the 
vortex segment�s descent velocity.  
 
 Now as to the matter of time introduced by Eq. (0.51); for the rotor blade, the time 
increment, ∆t, represents the time, t, it takes to travel back from the blade, which is at the snapshot 
azimuth angle, ψ, (at time, to) to the vortex segment, dS, which is located at θ (at time, t) . That is  

(0.52)      ot t t∆ = −

Since the blade�s angular rotation speed is Ω, it follows that   

(0.53)     ot t t θ−ψ
∆ = − =

Ω
 

which immediately says that 

(0.54)     dzv dzv dzv dzvZv t
dt dt dt d

θ−ψ⎛ ⎞= + ∆ = = θ = θ⎜ ⎟Ω Ω θ⎝ ⎠
 

In many propeller studies, dZv/dθ is a measure of helix angle or sometimes propeller pitch.  
 
 Now, quite methodically, begin with the Biot-Savart law as previously stated: 

(0.55)     ( ) i j j iv
x 3

L dS L dS
d dv / dxv d

4 L
−⎡ ⎤γ

= θ⎢ ⎥π ⎣ ⎦
 

where the dimensions are expressed as vectors. The distance, L, between the vortex segment to the 
radius station, r, at which the induced velocity is sought, is determined by 

(0.56)     

i j k

3/ 23 2 3 2

L L L L (Xr Xv)i (Yr Yv) j (Zr Zv)k

where Xr r cos Yr r sin Zr 0
dzvXv rvcos Yv rvsin Zv
d

and L (Xr Xv) (Yr Yv) (Zr Zv)

= + + = − + − + −

= − ψ = + ψ =

= − θ = + θ = + θ
θ

⎡ ⎤= − + − + −⎣ ⎦

 

 
In a similar manner, the vortex is described by 
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(0.57)     ( ) ( ) ( )i j kS S S S Xv i Yv j Zv k= + + = + +  

but with rotor-blade vortex geometry,  

(0.58)     

( )

( )

i
i

j
j

k
k

S XvdS d d rvsin d

S YvdS d d rv cos d

S zvdS d

∂ ∂
= θ = θ = θ
∂θ ∂θ
∂ ∂

= θ = θ = θ
∂θ ∂θ
∂ ∂

= θ = θ
∂θ ∂θ

θ

θ  

The substitution of this rotor-blade geometry into the Biot-Savart law gives, with simplification 

(0.59)     ( ) ( ) ( )

( ) ( )

2
v

r 3/ 22
2 2 2

rv r rv cos
d dv / drv d

4 dzvrv r 2r rv cos
d

⎧ ⎫
⎪ ⎪
⎪ ⎪− ψ −θγ

= θ⎨ ⎬π ⎡ ⎤⎪ ⎪⎛ ⎞+ − ψ −θ + θ⎢ ⎥⎜ ⎟⎪ ⎪θ⎝ ⎠⎢ ⎥⎣ ⎦⎩ ⎭

 

 
 Because this is a single-bladed rotor in hover, there is an opportunity to choose the blade 
azimuth position at any value that is convenient. This is because the hover problem is completely 
symmetrical around the Z axis and �forward� has no meaning. (This is not possible in the forward 
flight case, as you will see in Part III of this note.) Given this latitude, choose ψ = 0. This reduces 
Eq. (0.59) to 

(0.60)     ( ) ( )

( )

2
v

r 3/ 22
2 2 2

rv r rv cos
d dv / drv d

4 dzvrv r 2r rv cos
d

⎧ ⎫
⎪ ⎪
⎪ ⎪− θγ

= θ⎨ ⎬π ⎡ ⎤⎪ ⎪⎛ ⎞+ − θ+ θ⎢ ⎥⎜ ⎟⎪ ⎪θ⎝ ⎠⎢ ⎥⎣ ⎦⎩ ⎭

 

which is a variation on Eq. (0.29) arrived at for the fixed wing after a U-turn. The variation is, of 
course, the addition of the term 

2
2dzv

d
⎛ ⎞ θ⎜ ⎟θ⎝ ⎠

 

 
 Now let me address the wake age parameter, θ. The vortex wake leaves the blade lifting line 
referenced to ψ = 0. Therefore the smallest that θ can be is θ = ψ = 0. The vortex spirals backwards 
(round and round and down) to θ = � ∞. While it is not practical to go all the way back to θ = � ∞, the 
intent is to go as far back as possible to avoid missing any influence of what many refer to as the far 
wake. Nevertheless, the integration over the wake age becomes 
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(0.61)     ( )

( )

0

2
v

r 3/ 22
2 2 2

rv r rv cos
dv / drv d

4 dzvrv r 2r rv cos
d

−∞

⎧ ⎫
⎪ ⎪
⎪ ⎪− θγ

= θ⎨ ⎬π ⎡ ⎤⎪ ⎪⎛ ⎞+ − θ+ θ⎢ ⎥⎜ ⎟⎪ ⎪θ⎝ ⎠⎢ ⎥⎣ ⎦⎩ ⎭

⌠
⎮
⎮
⎮
⎮
⎮
⌡

 

 
 The immediate objective is to perform the integration required by Eq. (0.61). Suppose the 
vortex circulation, γv, does not vary with wake age. And suppose the vortex descent measure, 
dzv/dθ, is constant. The only immediate numerical problem that is apparent in Eq. (0.61) is when the 
integrand�s denominator is identically zero or so close to zero that numerical integration built into 
Mathcad flounders. This situation will only occur when θ is actually zero and when r = rv.  
 
 To illustrate the results of integrating Eq. (0.61) over the wake age using Mathcad�s built-in 
scheme, choose some rational values for a single-bladed rotor. For this example 

 
Parameter Value 

Rotor radius, R, feet 30.0 
Root cutout, rc, feet 3.0 
Trail vortex from radius, rv, feet 27.0 
Calculate induced velocity at radius, r, feet 16.5 
Trailed vortex strength, γv, ft2 per second 1,265.0 
Vortex descent measure, dzv/dθ, feet per radian 2.0 
Wake age, θend, radians  �157.0 
Number of 360-degree spirals 25 
Distance from rotor down to last spiral, zv, feet  314 

 

Mathcad was quite happy to whip out the answer so long as the input was chosen that avoids r = rv 
by a considerable margin. (Just imagine the wake age integral in summation form with wake age 
segments of 0.01 degrees! It would take forever.) In the blink of an eye Mathcad produced Fig. 13. 
Figure 13 shows that induced velocity accumulates very quickly with increasing number of spirals 
included in the integration. Closer inspection of Fig. 14, an enlargement of Fig. 13, shows that the 
vortex segments included in the first half spiral contribute in a rather linear fashion to the induced 
velocity at blade radius station, r. But as the spiral continues around, it comes back underneath the 
blade (see Fig. 12) and the close proximity allows the vortex to become very influential. In short, the 
denominator in Eq. (0.61) with θ around �270 degrees is very influenced by the vortex descent 
measure, dzv/dθ.  
 
 In advanced, modern numerical integration of the real rotor system problem, wandering 
vortices do come close and, indeed, even intersect the lifting line or lifting surface of the blade that 
trailed the vortices. That is to say Eq. (0.61)�s denominator finds some way to go to zero in the real 
problem. Furthermore, when there are more blades to consider, the ensuing possibilities of this 
denominator going to zero has been a major source of frustration in achieving accurate solutions for 
the rotor hovering and forward flight problems. The current crutch most widely used has been to add 
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what is called a vortex core to the denominator of Eq. (0.61) so zero can never occur. The fact that a 
vortex does have a real physical core of measurable diameter makes the core�s inclusion in Eq. 
(0.61) reasonable. This concept of a vortex core diameter, VCD, means that Eq. (0.61) can be 
written as 

(0.62)     ( )

( )

0

2
v

r 3/ 22
2 2 2 2

rv r rv cos
dv / drv d

4 dzvrv r 2r rv cos VCD
d

−∞

⎧ ⎫
⎪ ⎪
⎪ ⎪− θγ

= θ⎨ ⎬π ⎡ ⎤⎪ ⎪⎛ ⎞+ − θ+ θ +⎢ ⎥⎜ ⎟⎪ ⎪θ⎝ ⎠⎢ ⎥⎣ ⎦⎩ ⎭

⌠
⎮
⎮
⎮
⎮
⎮
⌡

 

To make progress over recent years, technologists have achieved considerable numerical stability 
even when tackling the hardest problems using this concept of a vortex core. For this part of the 
note, completely dismiss the whole vortex core diameter issue. 
 
 Going on then, consider the collection of all the trailed vortices by performing the radial 
integration over the blade span from the root cutout, rc, to the blade tip, r = R. This step begins by 
assuming a bound circulation distribution carried on the lifting line. Assume the bound circulation 
has an elliptical distribution4 described by 

(0.63)     ( )
( )

2
c

r o 2
c

2r r R
1

R r
− −

Γ = Γ −
−

 

which gives the circulation strength of a vortex trailing from radius station, rv, as 

(0.64)     
( )
( )

( )
o c

v 22
cc

2
c

2R 2rv r R1 d
R r2rv r R

1
R r

⎧ ⎫
⎪ ⎪

⎡ ⎤⎪ ⎪− Γ − −⎪ ⎪γ = − ⎢ ⎥⎨ ⎬
−⎢ ⎥⎪ ⎪− − ⎣ ⎦−⎪ ⎪

−⎪ ⎪⎩ ⎭

rv  

The induced velocity along the blade�s radius collecting all vortices is then 

(0.65)     

( )
( )

( )
( )

( )

R 0

2
o c

r 2 32 2
c 2 2 2c

2
crc

rv r rv cos2 2rv r R1v d drv
4 R r2rv r R dzvrv r 2r rv cos1

dR r
−∞

⎧ ⎫
⎪ ⎪

⎡ ⎤ ⎪ ⎪− θΓ − −
= θ⎢ ⎥ ⎨ ⎬π − ⎡ ⎤⎢ ⎥ ⎪ ⎪− − ⎣ ⎦ ⎛ ⎞+ − θ+ θ− ⎢ ⎥⎜ ⎟⎪ ⎪θ⎝ ⎠− ⎢ ⎥⎣ ⎦⎩ ⎭

⌠ ⌠
⎮ ⎮
⎮ ⎮
⎮ ⎮
⎮ ⎮
⎮ ⎮

⌡⌡

/ 2

                                                

 

 
Now, let me illustrate a completely numerical solution for this double integral.  
 

 
4 Keep in mind that the more general distribution used by fixed-wing engineers, Eq. (0.23), could be used to extend the 
results beyond an elliptical distribution. 
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 Now, from Parts I and II of this note, the numerical integration of Eq. (0.65) will not 
converge to a solution because of any number of singular points. Mathcad�s built-in integration 
scheme flounders even if a close-proximity situation occurs. You also know that the induced 
velocity�given an elliptical bound circulation along the lifting line�must contain the solution for a 
fixed wing. That is, at the very least  

( )
o

r
c

v
2 R r

Γ
=

−
 

The approach then is to first borrow the fixed-wing solution technique of letting 

(0.66)     

c c

c c

c

R r R rr cos a
2 2

R r R rrv cos a bcos
2 2

R rdrv sin d bsin d
2

+ −⎛ ⎞ ⎛ ⎞= − α = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

+ −⎛ ⎞ ⎛ ⎞= − β = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−⎛ ⎞= β β = β β⎜ ⎟
⎝ ⎠

bcosα

β  

where β goes from 0 to π. This coordinate system change at least transforms the vortex circulation 
strength, γv, of Eq. (0.64) to the very much simpler 

(0.67)      v o cos dγ = −Γ β β

The completed substitution of Eqs. (0.66) and (0.67) into Eq. (0.65) restates the induced-velocity 
double integral problem as 

(0.68)     

( ) ( ) ( )

( ) ( ) ( )( )

0

2
o

r 3/ 22
2 2 2

0

a bcos a bcos cos a bcoscosv d d
4 dzva bcos a bcos 2 a bcos a bcos cos

d

π

−∞

⎧ ⎫
⎪ ⎪
⎪ ⎪− α − β θ− − β−Γ β

= θ β⎨ ⎬π ⎡ ⎤⎪ ⎪⎛ ⎞− β + − α − − α − β θ+ θ⎢ ⎥⎜ ⎟⎪ ⎪θ⎝ ⎠⎢ ⎥⎣ ⎦⎩ ⎭

⌠ ⌠
⎮ ⎮
⎮ ⎮
⎮ ⎮
⎮ ⎮
⎮ ⎮

⌡⌡

 

 
 So, now to numerically integrate Eq. (0.68). The scheme allows Mathcad to perform the 
wake age integral, but the spanwise integration is performed with a summation. This takes advantage 
of Mathcad�s very, very fast integration over wake age. Thus, a useable numerical integration 
scheme reads like this: 
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o c

INPUT
dzv2 R 1.2 r 0.2 0
d

Dimension integration.
Extent of wake age, WA
Number of radial stations at which vortices leave rotor blade, M 90  
Range of radial stations where induced velocity is calcul

Γ = = = =
θ

= −π
=

( )( ) ( )

( ) ( ) ( )( )

c c

s

m

2
o

m

2 2

ated, s 0,1.......M 1

Then proceed with these calculations
R r R ra b

2 2
1= s

M 2

m 0,1......M m
M

a b cos a b cos cos a b coscosdvd
4 dzva b cos a b cos 2 a b cos a b cos cos

d

= −

− +
= =

π ⎛ ⎞α +⎜ ⎟
⎝ ⎠

π⎛ ⎞= β = ⎜ ⎟
⎝ ⎠

− α − β θ− − β−Γ β
β =

π ⎛ ⎞− β + − α − − α − β θ+ ⎜ θ⎝ ⎠

0

3/ 22
2

WA
M 1

m m 1
s

m 0

s s

d

dvd dvdv
M 2

r a b cos

−
+

=

⎧ ⎫
⎪ ⎪
⎪ ⎪

θ⎨ ⎬
⎡ ⎤⎪ ⎪

θ⎢ ⎥⎟⎪ ⎪
⎢ ⎥⎣ ⎦⎩ ⎭

β + βπ
=

= − α

⌠
⎮
⎮
⎮
⎮
⎮
⌡

∑

 

 
Notice on this sample input that it corresponds to the U-turning wing problem of D = 0.7, b = 1, Γo = 
2, which gives the induced velocity distribution shown on Fig. 8. This check case did check. 
Mathcad was faster and more accurate with the wake age integral broken into several ranges. The 
following seemed best 

( ) ( ) ( ) ( ) ( )
0 0 5 3

180
WA 5 3 WA

180

f , d f , d f , d f , d f , d
π

− −π − π

π
− −π − π

α β θ = α β θ+ α β θ+ α β θ+ α β θ∫ ∫ ∫ ∫ ∫  

 
 Now consider a practical case of a 4-bladed, 44-foot-diameter rotor lifting about 10,800 
pounds while operating at a tip speed, Vt = ΩR = 600 ft/sec. The above input requires an estimate for 
maximum bound circulation, Γo , and the vortex segment descent rate, dzv/dθ. Rational estimates for 
both parameters can be obtained. To begin with, assume each blade has a root cutout of rc = R/6 and 
each blade has an elliptical bound circulation over its span. The bound circulation�s maximum will 
be Γo = 225 ft2/sec, which is calculated from 

(0.69)     
( )

2

t o o 2
t

rc 8LLift per blade RV 1 so
8 R RV 1 rc R

⎡ ⎤π ⎛ ⎞= ρ Γ − Γ =⎢ ⎥⎜ ⎟ ⎡ ⎤⎝ ⎠ πρ −⎢ ⎥⎣ ⎦ ⎣ ⎦
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Next, assume a vortex segment, dS, is carried downward with the downwash velocity. From simple 
momentum theory, this downwash or induced velocity is 19.3 ft/sec when calculated with 

(0.70)     i 2

LMomentum induced velocity v
2 R

≡ =
ρπ

 

Then, in one second, a segment will have descended 19.3 feet. But in one second, the rotor blade 
will move through a wake age angle of θ = Ω times one second. Therefore, the vortex segment 
descent rate is simply 

(0.71)     i i

t t

v times 1 second v vdzv R
d times 1 second V R V

= =
θ Ω

i=  

which is roughly 0.7 feet per radian for this representative example. This means that in one complete 
spiral revolution, the vertical distance will be 0.7(2π) feet or roughly 4.4 feet for every revolution. 
This is a measure of Fig. 12�s spiral spacing or pitch.  
 
 To summarize this typical one-bladed rotor�s operating situation, the representative 
calculations that follow were based on 
 

2
o c

INPUT
dzv225ft / sec R 22ft r R / 6 0.7 ft / rad
d

Dimension integration.
Extent of wake age, WA variable for this example
Number of radial stations at which vortices leave rotor blade, M 90  
Range of radial 

Γ = = = =
θ

=
=

stations where induced velocity is calculated, s 0,1.......M 1= −

 

 
 An immediate question is: How many spirals does it take to accurately approximate an 
infinite wake? As seen from Fig. 15, perhaps about one hundred, 360-degree spirals captures the 
problem in a promising way. This amounts to 440 feet of wake or about 10 rotor diameters. A more 
quantitative measure of a practical engineering solution is induced horsepower, HPi. This major 
contributor to total power is calculated as 

(0.72)     ( )
R R

i r r r rrc rc

1 1HP v dL v V dr
550 550

= = ρ∫ ∫ rΓ  

The calculation was made using the summation of 90 rectangular slivers. The results, tabulated 
below, indicate that even 20 spirals will neglect about 2 to 3 horsepower, which is on the order of 2 
to 3 percent missing horsepower because the wake age was not extended to infinity. The ratio of 
calculated induced horsepower to ideal momentum horsepower (i.e., Lvi/550 = 95.524 horsepower) 
is the fourth column in the table. The reciprocal of this ratio, known as Figure of Merit, is provided 
by the sixth column. A Figure of Merit above 1.0 is not possible and thus at least 10.5 spirals are 
required before a rational answer starts to become apparent. Clearly, an elliptical bound circulation, 
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which is ideal for a fixed wing (i.e., the equivalent of FM = 1 for a rotating wing), is far from ideal 
for a rotating wing. 

 
Number 

of 
Spirals 

Blade 
Lift 

Calculated 
Induced HP 

Ideal 
Induced 

HP 
Calculated 
HP/HPideal

 
Figure of 

Merit 
0.5 2712.52 29.57 95.52 0.31 3.23 
1.5  55.31 0.58 1.73 
2.5  70.41 0.74 1.36 
3.5  80.32 0.8408 1.189 
5.5  92.33 0.9666 1.0346 
10.5  104.44 1.0934 0.9146 
20.5  110.25 1.1541 0.8665 

100.5  112.79 1.1808 0.8469 
200.5  112.84 1.1813 0.8465 

 

Do not assume that this example has provided anything more than a crude estimate for a single-
bladed rotor�s actual performance. The prescribed wake geometry used is very, very far from the 
wake visually observed in any number of experiments. The example would surely come out 
differently�and more accurately compared to experiment�if (or when) this sample problem is 
calculated with advanced methods in use today. 
 
 For the sake of completeness, Fig. 16 gives the running lift, ∆Lr, and running horsepower, 
∆HPi, versus radius station. These data are for 100.5 spirals.  
 
 This concludes Part I and Part II of this note. The next step is to apply this background to the 
single-bladed rotor in forward flight. 
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III.  A Rotating Blade in Forward Flight 
 
 The next step in the bridge between a fixed and rotating wing is examined with this portion 
of the note. The rotating wing in forward flight deposits a rather complicated vortex wake in space 
as it flies away. A hint of the wake�s complexity is seen below. 
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 In the sketch (pg. 27), the rotating wing�the single-bladed rotor�is rotating about the 
Z axis in the X � Y plane at angular velocity, Ω , in radians per second. The blade is attached to a 
hub. The hub is located at X=Y=Z=0. The X � Y � Z axis system moves through space straight 
along the plus X direction with forward velocity, V, in feet per second. The axis system neither 
pitches nor rolls and it does not climb or descend. The rotor blade has a radius, R, in feet and a root 
cutout, rc, in feet. The tip speed of the rotor is Vt = ΩR in feet per second. The one vortex shown 
illustrates the drifting-down, spiraling path typical of all vortices.  
 
 A more complete picture of the wake complexity is provided with Figs. 17 through 20. These 
figures have been drawn for an advance ratio, µ = V/Vt = 0.5, and show the planform view. Start 
with Fig. 17 where the blade is at the azimuth angle, ψ, of 90 degrees. This azimuth is generally 
referred to as the advancing side of the rotor disc. In the fixed-wing problem, all vortices trail 
straight back, parallel to the X axis. Obviously, this is not true for a rotor blade. The tip vortex traces 
out a prolate cycloid, while the root cutout vortex follows a curtate cycloid. Figure 18 shows the 
planform view with the blade at the 180-degree azimuth position. Figure 19 places the blade at ψ = 
270 degrees, which is the retreating side of the rotor disc. Notice that the two outboard vortices 
trailed from the blade sharply turn nearly back on the blade itself. Finally, Fig. 20 shows the blade at 
its most downwind position of ψ = 360 or zero degrees. Here the trailed vortices really attack the 
blade. The possibilities of any given vortex directly intersecting the generating lifting line are quite 
real in the practical problem. 
 
 Before bringing the Biot-Savart law to bear on this problem, there are a few aspects of the 
notations to observe. To begin with, rather than deal with the geometry dimensionally, use the 
conventional rotor non-dimensional notations of   

(0.73)     

v

tpp

tpp
t

i

rx radius station where induced velocity is sought
R
rxv radius station where vortex is trailed
R

angle of attack of the tip path plane, positive nose up

V cos advance ratio
V

v  induced velocity

=

=

α ≡

µ = α

≡

tpp i
tpp

t

 calculated by momentum theory
Vsin v

  inflow ratio 
V
α −

λ =

 

 Now, using Fig. 21 as the reference, methodically begin with the Biot-Savart law as 
previously stated: 

(0.74)     ( ) i j j iv
x 3

L dS L dS
d dv / dxv d

4 L
−⎡ ⎤γ

= θ⎢ ⎥π ⎣ ⎦
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where the dimensions are expressed as vectors as displayed on Fig. 21. For the distance, L, between 
the vortex segment, dS, to the radius station, x, at which the induced velocity is sought, you have 

(0.75)      
[ ] [ ]

( ) [ ] ( )

i j k

tpp

3/ 23 2 3 2

L L L L (Xr Xv)i (Yr Yv) j (Zr Zv)k

where Xr R x cos Yr R x sin Zr 0

Xv R xv cos Yv R xvsin Zv R

and L (Xr Xv) (Yr Yv) (Zr Zv)

= + + = − + − + −

= − ψ = + ψ =

= − θ+µ ψ −θ = + θ = − λ ψ −θ⎡ ⎤⎣ ⎦

⎡ ⎤= − + − + −⎣ ⎦

 
In a similar manner, the vortex is described by 

(0.76)     ( ) ( ) ( )i j kS S S S Xv i Yv j Zv k= + + = + +  

but with rotor-blade vortex geometry, you have 

(0.77)     

( )

( )

i
i

j
j

k
k tpp

S XvdS d d R xvsin d

S YvdS d d R xv cos d

SdS d R

∂ ∂
= θ = θ = + θ+µθ
∂θ ∂θ
∂ ∂

= θ = θ = + θ θ
∂θ ∂θ
∂

= θ = + λ θ
∂θ

θ

 

The substitution of this rotor-blade and wake geometry into the Biot-Savart law gives, with 
simplification 

(0.78)     
( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ){ }

2
i j j i

33
22 2 2 2 2

tpp
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 As an intermediate step, integrate the Biot-Savart with respect to wake age assuming the 
vortex circulation is simply a constant. That is, tackle  
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The purpose of this step was to test Mathcad�s built-in integrator and be sure it did not flounder at 
any azimuth, ψ , or radius station, x, with the provision that x ≠ xv. To perform this test, I set γv = 
4π, and R = 1. I found that the near wake needed integration in several parts and finally selected 
integration as follows: 
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Mathcad�s built-in integrator struggled with the calculation at and near the blade�s root end (i.e., 
around the root cutout region) in the azimuth region from ψ = 330 to 360 degrees. The reason for 
this struggle is, of course, the near-zero value of L, as Fig. 20 clearly shows. Adding a vortex core 
diameter would obviate the problem in regions where the vortices are so closely packed.  
 
 The next step requires picking a bound circulation for the blade�s lifting line. Suppose the 
elliptical distribution is chosen and this distribution does not vary with azimuth. This means there 
will only be trailed vortices and no shed vortices to add to the problem for this example. (The case of 
a shed wake will be addressed shortly.) Thus, 
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Then, borrowing from the fixed-wing solution technique, let 
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where β goes from 0 to π. This coordinate-system change at least transforms the trailed vortex 
circulation strength, γv, to the very much simpler 
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and thus the induced-velocity double integral problem for an elliptical bound circulation that does 
not vary with azimuth is restated as 
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 The question now arises as to what value of the maximum bound circulation, Γo, is 
representative for this example. The calculation of this single-bladed rotor�s average or steady lift 
follows as: 
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On this basis, choose the blade geometry from Part II 
 
         R = 22  feet 
         xc = 1/6  non-dimensional 
 
and the forward flight conditions for this Part III problem are: 
 
          ρ = 0.002378  slugs per cubic feet 
         Vt = 603.605  feet per second 
          µ = 0.5  non-dimensional 
       λtpp =  � 0.03  non-dimensional 
         Γo = 225  square feet per second 
 
in which case the steady lift per blade is 2,712 pounds at 178 knots. 
 
 With this information as input, Mathcad and its built-in integrator is used to calculate Eq. 
(0.84) as follows: 
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 The calculation of induced velocity at the lifting line�as created by the trailed vortices from 
the lifting line�now follows from the above scheme. Additionally, lift and horsepower distributions 
are calculated from 
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 A representative illustration of azimuth varying induced velocity at several radial stations is 
shown on Figs. 22 and 23. Remember that this result is for a single-bladed rotor lifting 2,712 pounds 
at 0.5 advance ratio (i.e., V = 178 knots at Vt = 603.6 fps). Even more interesting is the azimuthal 
variation of the blade�s total lift and induced horsepower, shown on Fig. 24. The average or steady 
induced horsepower is obtained by  
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The result is HPi = 50.1 hp. This induced horsepower, calculated with the prescribed wake, 
compares to the ideal induced horsepower calculated in Part I as 
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which yields ideal HPi = 6.13 hp. This means that the elliptically loaded, single-bladed rotor requires 
about 8 times the power calculated by simple momentum theory! 
 
 An additional point made by Fig. 24 is that the highest lift is carried primarily on the 
advancing side of the rotor disc. As such, the rotor is out of trim because of the rolling moment 
inferred by Fig. 24. 
 

This leads to the question: If the rotor has an elliptical bound circulation that varies with 
azimuth so that the rolling moment is zero, what is the induced power? And this leads to the fourth 
and final Part of this note. 
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IV.  A Rotating Blade in Forward Flight With Zero Rolling Moment  
 
 The last step in the bridge between a fixed and rotating wing is concluded with this portion 
of the note. A fixed wing generally flies with zero rolling moment, RM. This same criterion can be 
applied to a rotating wing. [I refer to a rotating wing with RM = 0 as a �balanced� rotor.] Suppose 
the bound circulation of the single-bladed rotor is described by 
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In this case the lift and rolling moment are found as 
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and if the rolling moment is set to zero 
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 The Biot-Savart law of Eq. (0.84) now must include the trailed vortex circulation, γv , which 
is azimuth varying according to Eq. (0.89). Therefore, for this Part IV of the note: 
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The numerical integration of this slightly different equation (i.e., with azimuth varying circulation) 
follows exactly that given in Part III of this note.  
 
 The contribution of trailed vorticity to induced velocity at the lifting line of this �balanced� 
rotor is shown in Figs. 25 and 26. The total blade�s lift and induced power is given with Fig. 27. 
These results are for the balanced rotor producing 2,712 pounds of lift at 178 knots and can be 
compared to Fig. 24, which is for the �unbalanced� rotor. Only trailed vortices are contributing to 
the induced power at this point. The additional induced velocity and horsepower due to the shed 
wake are still to be included. 
 

 35



 A numerical solution scheme for the shed wake is relatively simple compared to that for the 
trailed wake. However, in the shed-wake problem, the vortex left behind the blade has a radial 
geometry and circulation just like the blade�s when the blade was at that azimuth. However, the 
vortex circulation is the negative of the blade�s bound circulation when it was there. The geometry 
of this shed-wake problem is shown on Fig. 28. Again, the conventional rotor non-dimensional 
notations are:   
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 Now, using Fig. 28 as the reference, begin with the Biot-Savart law  
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where the dimensions are expressed as vectors as displayed on Fig. 28. The distance, L, between the 
shed-vortex segment, dS, to the radius station, x, at which the induced velocity is sought, is 
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Notice that the length, L, is the same for the shed wake as for the trailed wake. To continue then, the 
vortex element is described by 
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but with rotor-blade shed-vortex geometry, the vortex extends radially and so the partial derivatives 
of S are with respect to xv. Thus 
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 With this information, the geometric part of the Biot-Savart law becomes 
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The Biot-Savart also needs the shed-vortex circulation as it varies with wake age. Thus, 
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and the double integral giving induced velocity at any radius station, x, and azimuth, ψ , using Eqs. 
(0.98) and (0.99)  is  
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 It is particularly important to study the integration with respect to wake age, θ, before 
discussing a complete integration of Eq. (0.100). The reason is that this portion of the integration has 
a definite possibility of �blowing up.� Therefore, reverse Eq. (0.100)�s integration order so that it 
reads as 
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In the first place, the integration is not a problem when θ = ψ because the numerator of the integrand 
is zero (i.e., ψ � θ = 0). Furthermore, from Eq. (0.95), the distance, L, between the vortex segment 
and the point on the blade where induced velocity is sought reduces to  
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which is only zero when x = xv. The physical meaning of this situation when θ = ψ is that the only 
vortex that exists is the blade�s bound circulation and this straight-line vortex can not induce a 
velocity on itself.  
 
 Now look at the solution when a shed vortex is in the region ψ � θ > 0 or, if you prefer, in 
the near wake. Suppose, for example, that the blade is at the 135-degree azimuth and θ is in the 
range 135 degrees backwards to 132 degrees in 1/30 of a degree increments. This represents three 
degrees of near wake. Assume the induced velocity is sought at the blade station, x = 0.5, and place 
the blade at azimuth ψ = 135 degrees. The accumulation of the shed wake�s influence is  

x,dv
area under versus

d
ψ θ

θ
 

The curve of x,dv
d

ψ

θ
 versus wake age is illustrated with Fig. 29. This figure suggests an impending 

singularity as computations are made very close to the blade. In fact, the velocity induced at the 
blade station x = 0.5 becomes so large that a semi-log scale for the ordinate on Fig. 29 is helpful in 
capturing how rapidly the shed wake�s influence drops off as the blade moves away from the 
deposited shed wake.   
 
 The common solution to the situation illustrated by Fig. 29 is to add a vortex core diameter, 
VCD, non-dimensionalized by rotor radius, R, to the L dimension of the shed-wake problem [refer 
back to the discussion surrounding Eq. (0.62)]. This solution is effective, as Fig. 30 shows. Of 
course, it is the integrated value  
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that is more important, and this integrated result is shown versus vortex core diameter ratioed to 
radius in Fig. 31 for x = 0.5 and ψ = 135 degrees. And even more important is the integrated value 
of induced velocity considering the wake extending all the way back to, say, θ = �20π. The induced 
velocity at x = 0.5 (and with ψ = 135 degrees) including this far wake is also shown on Fig. 31. 
 
 To examine the influence of the shed wake further, select, somewhat arbitrarily, the ratio of 
vortex core diameter to rotor radius equal to 0.015. Now the distance, L, between the vortex segment 
and rotor-blade station where induced velocity is sought, x, is rewritten as  
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Mathcad�s built-in numerical integrator had absolutely no problem calculating the induced velocity 
at all radius stations and any azimuth. 
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The calculation could be performed even at x = xv because the distance, L, can never be smaller than 
VCD/R. Furthermore, because the shed wake�s circulation goes smoothly to zero at both the blade 
root and tip, there is no need to perform a fixed-wing coordinate transformation as was helpful for 
the trailed wake integration of both fixed and rotary wings.  
 
 The next objective is to calculate the induced velocity for the sample problem�s geometry 
and operating condition. To begin the numerical integration, additional input is required, however. 
The additional input that satisfies rotor lift = 2,712 pounds at an advance ratio of 0.5 is that Γo = 334 
and   Γ1 = �253.9. For convenience, the complete input for the shed-wake numerical integration is: 
 
         R = 22  feet 
         xc = 1/6  non-dimensional 
          ρ = 0.002378  slugs per cubic feet 
           VCD/R = 0.015  non-dimensional 
         Vt = 603.605  feet per second 
          µ = 0.5  non-dimensional 
     λtpp = �0.03  non-dimensional 
         Γo = 334  square feet per second 
         Γ1 =  �253.9  square feet per second 
 
 With this information as input, put Mathcad and its built-in integrator to work calculating Eq. 
(0.103) as follows: 
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 The calculation of induced velocity at the lifting line�as created by the shed vortices from 
the lifting line�follows from the above scheme. Additionally, lift and horsepower distributions are 
calculated from 

(0.104)     
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 The shed wake significantly contributes to the total induced velocity that the rotor blade sees, 
primarily over the mid-span portion of the blade. For example, the azimuthal variation in induced 
velocity at the three radius stations under examination (i.e., x = 0.25, 0.50, and 0.75) is provided by 
Figs. 32, 33, and 34. It is at the mid-span that the shed wake�s additional induced velocity is the 
greatest. 
 
 The blade�s azimuthally varying lift for the balanced rotor is illustrated with Fig. 35. Note, in 
contrast to the unbalanced rotor shown on Fig. 24, the balanced rotor carries lift in the fore and aft 
quadrants of the revolution. This gives, in effect, a short wing span or low aspect ratio characteristic 
to the balanced rotor. As Fig. 36 shows, this concentration of balanced rotor lift in the fore and aft 
direction is accompanied by excessive induced horsepower when compared to the unbalanced rotor 
of Fig. 24. The average or steady induced horsepower for the balanced rotor is HPi = 76.4 hp versus 
50.1 hp for the unbalanced rotor and versus 6.13 hp for the ideal fixed wing.  
 
 The requirement for a rotor to have zero rolling moment is clearly adverse to the induced 
power required to produce lift. The ratio of balanced rotor-induced horsepower to ideal fixed wing-
induced horsepower is 76.4/6.13 = 12.4. But keep in mind that while an elliptical bound circulation 
is ideal for a fixed wing, it is not obviously true for a rotary wing.  
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V.  Closing Remarks 
 
 This elementary introduction to induced velocity has been presented assuming an elliptical 
bound circulation distributed along a lifting line to represent both the wing and the rotor. The 
assumption has been that  

n
1

A sin n
∞

Γ ∝ β∑  

and that A1 = 1 while A2 through A∞ = 0. An extension of the fundamental equations provided by 
this note could easily be made using a full set of the Fourier series. This extension�if made�would 
completely generalize the lift distribution for the rotor just as is done in the case of fixed-wing 
theory. 
 
 The lifting rotor�s spiraling vortex wake structure leads to very high induced power when 
compared to the ideal wing. For an advance ratio of 0.50, interference created by the spiraling rotor 
wake leads�just for a single blade�to induced power on the order of 10 times that of the wing 
when the comparison is made at wing span = rotor diameter and equal lift. While an elliptical bound 
circulation is known to be ideal for the fixed wing, it is quite probably not ideal for the rotary wing 
in high-speed forward flight. 
 
 A single-bladed rotor and prescribed wake geometry have been selected for this rotary-wing 
introduction. This has been useful for an elementary discussion. However, the practical problem 
includes any number of blades and vortex wake structure that is free to deform based on 
fundamental principles. Furthermore, representing the rotor blade by a lifting line is quite 
unsatisfactory when the rotor lift distribution varies with time. Fortunately, advanced analyses 
coupled with powerful digital computers have given today�s rotorcraft engineers insight and 
practical answers to the effect of a rotor system�s wake upon the lifting surfaces that created the 
wake.  
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